Crosslinked carboxymethyl cellulose-SiO2 hidrogels fabrication: Composition and thermal stability towards biomedical applications

Palabras clave: Hidrogel de carboximetilcelulosa, Nanopartículas de dióxido de sílice, Funcionalización con aminas, Entrecruzamiento con química de carbodiimida, Composición del material, Estabilida térmica, Biomedicina

Resumen

Novel and innovative materials for biomedical and pharmaceutical applications have to consider several factors during their fabrication, such as the material composition and thermal stability, aiming to establish the promising physicochemical properties towards efficient and controlled drug release systems. In this study, carboxymethyl cellulose (CMC) hydrogels are prepared by incorporating silica dioxide (SiO2) nanoparticles previously modified with primary amine (-NH2) functional groups. The carbodiimide chemistry method is performed to promote the crosslinking of the CMC structure through the formation of amide bonds from the activation of carboxyl (C=O) groups and further covalent binding with -NH2 groups. The morphology information displays high dispersed SiO2 nanoparticles with a smooth surface, regular shape, and an average particle size of 104 nm. The material composition and thermal stability are evaluated using the Fourier transform infrared spectroscopy and thermogravimetric analysis to establish a preliminary overview of a functional hydrogel for biomedical and pharmaceutical applications. The formation of amide bonds is confirmed indicating the successful crosslinking of the CMC structure with SiO2-NH2 nanoparticles, which is attributed to the activation of the C=O groups and its strong affinity to the -NH2 groups. This interaction enhanced the thermal stability of the crosslinked CMC-SiO2 hydrogels up to 469°C which was the last decomposition event, outstanding the contribution of major content of SiO2-NH2 nanoparticles. These preliminary results suggest a suitable procedure for the fabrication of crosslinked CMC-SiO2 hydrogels as novel materials with promising physicochemical properties, allowing to proceed with further research works related to the controlled drug release and delivery.

Descargas

La descarga de datos todavía no está disponible.

Referencias bibliográficas

Abeer, M. M., Rewatkar, P., Qu, Z., Talekar, M., Kleitz, F., Schmid, R.,… Popat, A. (2020). Silica nanoparticles: A promising platform for enhanced oral delivery of macromolecules. Journal of Controlled Release, 326(April), 544–555. https://doi.org/10.1016/j.jconrel.2020.07.021

Asere, T. G., Mincke, S., Folens, K., Vanden Bussche, F., Lapeire, L., Verbeken, K., … Stevens, C. V. (2019). Dialdehyde carboxymethyl cellulose cross-linked chitosan for the recovery of palladium and platinum from aqueous solution. Reactive and Functional Polymers, 141(January), 145–154. https://doi.org/10.1016/j.reactfunctpolym.2019.05.008

Asri Mohd Esa, Y., & Sapawe, N. (2020). Removal of methylene blue from aqueous solution using silica nanoparticle extracted from skewer coconut leaves. Materials Today: Proceedings, 31, 398–401. https://doi.org/10.1016/j.matpr.2020.07.192

Gholamali, I., & Yadollahi, M. (2020). Doxorubicin-loaded carboxymethyl cellulose/Starch/ZnO nanocomposite hydrogel beads as an anticancer drug carrier agent. International Journal of Biological Macromolecules, 160, 724–735. https://doi.org/10.1016/j.ijbiomac.2020.05.232

Giner-Casares, J. J., Henriksen-Lacey, M., Coronado-Puchau, M., & Liz-Marzán, L. M. (2016). Inorganic nanoparticles for biomedicine: Where materials scientists meet medical research. Materials Today, 19(1), 19–28. https://doi.org/10.1016/j.mattod.2015.07.004

Javanbakht, S., & Shaabani, A. (2019). Carboxymethyl cellulose-based oral delivery systems. International Journal of Biological Macromolecules, 133, 21–29. https://doi.org/10.1016/j.ijbiomac.2019.04.079

Jeong, D., Kim, C., Kim, Y., & Jung, S. (2020). Dual crosslinked carboxymethyl cellulose/polyacrylamide interpenetrating hydrogels with highly enhanced mechanical strength and superabsorbent properties. European Polymer Journal, 127(December 2019), 109586. https://doi.org/10.1016/j.eurpolymj.2020.109586

Jiang, X., Yang, Z., Peng, Y., Han, B., Li, Z., Li, X., & Liu, W. (2016). Preparation, characterization and feasibility study of dialdehyde carboxymethyl cellulose as a novel crosslinking reagent. Carbohydrate Polymers, 137, 632–641. https://doi.org/10.1016/j.carbpol.2015.10.078

Kadry, G. (2019). Comparison between gelatin/carboxymethyl cellulose and gelatin/carboxymethyl nanocellulose in tramadol drug loaded capsule. Heliyon, 5(9), e02404. https://doi.org/10.1016/j.heliyon.2019.e02404

Kamel, S., El-Gendy, A. A., Hassan, M. A., El-Sakhawy, M., & Kelnar, I. (2020). Carboxymethyl cellulose-hydrogel embedded with modified magnetite nanoparticles and porous carbon: Effective environmental adsorbent. Carbohydrate Polymers, 242(April). https://doi.org/10.1016/j.carbpol.2020.116402

Kanikireddy, V., Varaprasad, K., Jayaramudu, T., Karthikeyan, C., & Sadiku, R. (2020). Carboxymethyl cellulose-based materials for infection control and wound healing: A review. International Journal of Biological Macromolecules, 164, 963–975. https://doi.org/10.1016/j.ijbiomac.2020.07.160

Lee, K. I., Lin, J. W., Su, C. C., Fang, K. M., Yang, C. Y., Kuo, C. Y., … Chen, Y. W. (2020). Silica nanoparticles induce caspase-dependent apoptosis through reactive oxygen species-activated endoplasmic reticulum stress pathway in neuronal cells. Toxicology in Vitro, 63(August 2019), 104739. https://doi.org/10.1016/j.tiv.2019.104739

Lin, P., Liu, L., He, G., Zhang, T., Yang, M., Cai, J., … Tao, S. (2020). Preparation and properties of carboxymethyl chitosan/oxidized hydroxyethyl cellulose hydrogel. International Journal of Biological Macromolecules, 162(November 2020), 1692–1698. https://doi.org/10.1016/j.ijbiomac.2020.07.282

Mahmoodi, N. M., Khorramfar, S., & Najafi, F. (2011). Amine-functionalized silica nanoparticle: Preparation, characterization and anionic dye removal ability. Desalination, 279(1–3), 61–68. https://doi.org/10.1016/j.desal.2011.05.059

Mahmoud, M. E., Abdou, A. E. H., Sobhy, M. E., & Fekry, N. A. (2017). Solid–solid crosslinking of carboxymethyl cellulose nanolayer on titanium oxide nanoparticles as a novel biocomposite for efficient removal of toxic heavy metals from water. International Journal of Biological Macromolecules, 105(December 2017), 1269–1278. https://doi.org/10.1016/j.ijbiomac.2017.07.156

Mapkar, J. A., Iyer, G., & Coleman, M. R. (2009). Functionalization of carbon nanofibers with elastomeric block copolymer using carbodiimide chemistry. Applied Surface Science, 255(9), 4806–4813. https://doi.org/10.1016/j.apsusc.2008.11.068

Pourrajab, R., Noghrehabadi, A., Hajidavalloo, E., & Behbahani, M. (2020). Investigation of thermal conductivity of a new hybrid nanofluids based on mesoporous silica modified with copper nanoparticles: Synthesis, characterization and experimental study. Journal of Molecular Liquids, 300(February 2020), 112337. https://doi.org/10.1016/j.molliq.2019.112337

Rao, Z., Ge, H., Liu, L., Zhu, C., Min, L., Liu, M., … Li, D. (2018). Carboxymethyl cellulose modified graphene oxide as pH-sensitive drug delivery system. International Journal of Biological Macromolecules, 107(PartA), 1184–1192. https://doi.org/10.1016/j.ijbiomac.2017.09.096

Sepulveda, J., Villegas, C., Torres, A., Vargas, E., Rodriguez, F., Baltazar, S., … Galotto, M. J. (2020). Effect of functionalized silica nanoparticles on the mass transfer process in active PLA nanocomposite films obtained by supercritical impregnation for sustainable food packaging. Journal of Supercritical Fluids, 161(July), 104844. https://doi.org/10.1016/j.supflu.2020.104844

Shahbazi, M., Ahmadi, S. J., Seif, A., & Rajabzadeh, G. (2016). Carboxymethyl cellulose film modification through surface photo-crosslinking and chemical crosslinking for food packaging applications. Food Hydrocolloids, 61(December), 378–389. https://doi.org/10.1016/j.foodhyd.2016.04.021

Tang, J., Li, Y., Song, Y., Wu, X., Yu, G., & Tam, K. C. (2020). Carbodiimide coupling versus click chemistry for nanoparticle surface functionalization: A comparative study for the encapsulation of sodium cholate by cellulose nanocrystals modified with β-cyclodextrin. Carbohydrate Polymers, 244(May), 116512. https://doi.org/10.1016/j.carbpol.2020.116512

Zhang, C., Yang, X., Li, Y., Qiao, C., Wang, S., Wang, X., … Li, T. (2020). Enhancement of a zwitterionic chitosan derivative on mechanical properties and antibacterial activity of carboxymethyl cellulose-based films. International Journal of Biological Macromolecules, 159(September), 1197–1205. https://doi.org/10.1016/j.ijbiomac.2020.05.080

Zhang, Z., Zhu, Y., Dai, R., Zhang, Y., Wang, H., & Li, J. (2018). Enhanced photocytotoxicity induced by a platinum diimine complex employing amine-functionalized magnetite-silica nanocomposites as delivery vehicles. Photodiagnosis and Photodynamic Therapy, 23(June), 50–54. https://doi.org/10.1016/j.pdpdt.2018.06.002

Zhong, Y., Wang, J., Yuan, Z., Wang, Y., Xi, Z., Li, L., … Guo, X. (2019). A mussel-inspired carboxymethyl cellulose hydrogel with enhanced adhesiveness through enzymatic crosslinking. Colloids and Surfaces B: Biointerfaces, 179(December 2018), 462–469. https://doi.org/10.1016/j.colsurfb.2019.03.044

Zhu, X., Bao, L., Wei, Y., Ma, J., & Kong, Y. (2016). Removal of toxic indigo blue with integrated biomaterials of sodium carboxymethyl cellulose and chitosan. International Journal of Biological Macromolecules, 91(October), 409–415. https://doi.org/10.1016/j.ijbiomac.2016.05.097

Publicado
2020-10-15
Cómo citar
Patiño-Ruiz, D. (2020). Crosslinked carboxymethyl cellulose-SiO2 hidrogels fabrication: Composition and thermal stability towards biomedical applications. IPSA SCIENTIA: Revista Científica Multidisciplinaria, 5(1), 60-71. Recuperado a partir de https://latinjournal.org/index.php/ipsa/article/view/935
Sección
Artículos